All the data you need.

Tag: Model Interpretability

Model Interpretability: The Conversation Continues
This Domino Data Science Field Note covers a proposed definition of interpretability and distilled overview of the PDR framework. Insights are drawn from Bin Yu, W. James Murdoch, Chandan Singh, Karl Kumber, and Reza Abbasi-Asi’s recent paper, “Definitions, methods, and applications in interpretable machine learning”. Introduction Model interpretability continues to …
Data Ethics: Contesting Truth and Rearranging Power
This Domino Data Science Field Note covers Chris Wiggins‘s recent data ethics seminar at Berkeley. The article focuses on 1) proposed frameworks for defining and designing for ethics and for understanding the forces that encourage industry to operationalize ethics, as well as 2) proposed ethical principles for data scientists to …
Themes and Conferences per Pacoid, Episode 9
Paco Nathan’s latest article features several emerging threads adjacent to model interpretability. Introduction Welcome back to our monthly burst of themes and conferences. Several technology conferences all occurred within four fun-filled weeks: Strata SF, Google Next, CMU Summit on US-China Innovation, AI NY, and Strata UK, plus some other events. …
Model Interpretability with TCAV (Testing with Concept Activation Vectors)
This Domino Data Science Field Note provides very distilled insights and excerpts from Been Kim’s recent MLConf 2018 talk and research about Testing with Concept Activation Vectors (TCAV), an interpretability method that allows researchers to understand and quantitatively measure the high-level concepts their neural network models are using for prediction, …
Make Machine Learning Interpretability More Rigorous
This Domino Data Science Field Note covers a proposed definition of machine learning interpretability, why interpretability matters, and the arguments for considering a rigorous evaluation of interpretability. Insights are drawn from Finale Doshi-Velez’s talk, “A Roadmap for the Rigorous Science of Interpretability” as well as the paper, “Towards a Rigorous …
On Ingesting Kate Crawford’s “The Trouble with Bias”
Kate Crawford discussed bias at a recent SF-based City Arts and Lectures talk and a recording of the discussion will be broadcast, May 6th, on KQED and local affiliates. Members of Domino were in the live audience for the City Arts talk. This Domino Data Science Field Note provides insights …